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Summary: An expedrtlous preparation of the centi pyrroloisoqulndine skeleton of mansamine A (1) 
was achieved via the high-pressure Diels-Alder reaction of 3-afkyl-5,6-dihy&o-2-pyrfdimme (101 with 
Danfshefsky diene f&wed by tieprvtection and spontaneous pyrmlidlne rfng cfousure. 

Since the first isolation and structural elucidation of mamamineA(1)fromOkinawanmarine 

sponge by HQa2 and subsequent characterization of the five congeners (manzamine B-F)3 coupled 

with the independent isolation of the aame alkaloids as keramamin es.4 there have been widespread 

interests in the structure and synthesis of these oncolytic marine alkalolds. While the simplest 

congener manzamine C has recently been synthesized in this laboratory.5 the more complex 

manzamine A (1) is truely a challenging target for total synthesis. and three groups have reported 

their own synthetic studies in this area. Brands and Pantit6 described an approach to the central 

pyrroloisoquinoline framework of 1 ufa the intramolecular Diels-Alder reaction of the 

dihydropyrrole derivative. Another strategy for this substructure through a radical cyclization 

process has been announced by Hart and Mckimxy. 7 On the other hand, Imbroisi and stipk~ns* 

have recently reported a more general and versatile approach to the functionalfzed cls- 

hydroisoquinolines. Described hereIn is our own access to the pyrroloisoquinoline key 

intermediate for 1. which is featured by the utilization of a ultra-high-pressure Diels-Akier reaction 

of S-alkyl-5.6-dihydro-2-pyridinone. 

We have been M-ted in developing an efficient route to the trlcyclic intennedlate (2) ufa the 

Diels-Alder reaction of S-substituted dtbydropyridinones either in an intramolecular (path Al or 

intermolecular (path B) fashion as breifly shown in Scheme-l. Our initial studies along path A 

revealed that N-alkyl protected (i.e. Pl=alkyl) dihydropyridinones wen quite sluggish towards 

dieneseveninan intramolecular case and electron-withdrawing character of N-protecting group was 

essential for the successful intermolecular cycloadditions. 1 Further UlsQht into these thermal 

transformation led us to select the N-ptoluenesulfonyl m) dihydropyrldinones (eg. 3 1 as a 

dienophile in view of the thermal stabfflty of the ‘I’s group. In the model study using a simple N-Ts- 

dihydmpyrklinone (3). it was found that under conventional thermal condltlons. 3 reacted smoothly 

with the slloxy diene (4) to fumlsh. a&r acid treatment, the hydroisosuinolines IS. mp 175-178°C. 

&OEt/n-hexane) in moderate yield (3cheme-2). The cfs-ring fusion in 5 was unequfvocally assigned 

based on NOE experiments which showed an enhancement (4.1%) of the .@gnal correspondQj to the 

angular H upon irradiation of the angular methyl group, in accord with the literature preceder~ted.~~* 
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With these results in mind. we next examtned the Diels-Alder reaction ofthe two functtonaltzed 

dihydropyridmones (9 and 10 ) bearing proper amino acid side chain at C-3 for further elaboration 

toward 2. These dienophilea (9 and 1Olwere pr~paredfromN-t-l-2-pipe~Idone (6lthmgh the 

sequence as shown in Scheme -2. In contrast to the previous unsuccessful results with the N-p 

nitroben~ayl derhtive. 1 the reaction of 9 with excess diene (41 (pcymene. reflux 5hr) afforded. after 

acid treatment, the desired enone (11) in 26% yield along with the remmred 9 @096). Attempted 

improvement in yield by carring out thts reactio~‘~ under the influence of various Lewis adds as well 

as ultrasound sonication gave unsatisfactory results. Toward the key intermediate (2). we next 

examined the deprotection of the carbamate group (NCOOMe) by the use ofTMSl.g To our 

disappointment. howevex. the reaction of 11 with excess TMSI in CHCl3 at refhx gave the unexpected 

cycltc carbamate (12)lo in 57% yield instead of the pyrroloisoquinoline I141 . 

We next turned our attention to the Nb-EJDC.! derivative (10) because deprotectton of N-HOC group 

could be achieved much mom easily than the previous N-COOMe group. Thus. the same Diels-Alder 

reaction with Nb-HOC detitive (10) gave the corresponding enone (13) in a slightly better yield 

(-30%) but the purl&at&m of the product was proved to be quite difficult. To our delight, however, 

treatment of the crude 13 with CF3COOH in CH2Cl2 at r.t. followed by quenching with aqueous 

K2CO3 furnished the desired trkyclic pyrroloisoquinoltne (14 a and 146) in -4096 yield as a 

diastereomerlc mixture. 

To overcome the sluggishness of the dienophfle (10) toward the fairly unstable dime (41. we fInally 

tried a high-pressure Dtels-Alder reaction. 1 1 Encouradged by the initial success that the reaction of 

10 with excess 4 in toluene at 10 Kb for 20 hr at r.t. resulted in a cleaner reaction aliording 13 @CV%) 

and 10 (4096) , we have then conducted the same reactton at 1lKb for !IOhr. After evaporation of the 

excess reagents, crude products were treated with CSA in l?IF at r.t. to give the enone (13) as a major 

product along with small amount of 10. Crude 13 was then dire&y treated with CF3COOH to knish 

14 (14x 14b=l:l) , ahI- tmatmentofabase,in6096overallykldlkom10. ?hestructureof14aand 

14b were fully characterked by the spectroscopic means, !2 including H-H COSY, NOESY, and NOEDS 

experiments. l3 

Further elaborations toward more advanced intermediate for 1 are currently underway. 
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